\(\int \frac {1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx\) [591]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 492 \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx=-\frac {5 a b^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{2 \left (-a^2+b^2\right )^{9/4} d e^{3/2}}+\frac {5 a b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{2 \left (-a^2+b^2\right )^{9/4} d e^{3/2}}-\frac {\left (2 a^2+3 b^2\right ) \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right )^2 d e^2 \sqrt {\cos (c+d x)}}-\frac {5 a^2 b \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{2 \left (a^2-b^2\right )^2 \left (b-\sqrt {-a^2+b^2}\right ) d e \sqrt {e \cos (c+d x)}}-\frac {5 a^2 b \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{2 \left (a^2-b^2\right )^2 \left (b+\sqrt {-a^2+b^2}\right ) d e \sqrt {e \cos (c+d x)}}+\frac {b}{\left (a^2-b^2\right ) d e \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}-\frac {5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt {e \cos (c+d x)}} \]

[Out]

-5/2*a*b^(3/2)*arctan(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/(-a^2+b^2)^(9/4)/d/e^(3/2)+5/2*a*
b^(3/2)*arctanh(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/(-a^2+b^2)^(9/4)/d/e^(3/2)+b/(a^2-b^2)/
d/e/(a+b*sin(d*x+c))/(e*cos(d*x+c))^(1/2)+(-5*a*b+(2*a^2+3*b^2)*sin(d*x+c))/(a^2-b^2)^2/d/e/(e*cos(d*x+c))^(1/
2)-5/2*a^2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(b-(-a^2+b^2)^(
1/2)),2^(1/2))*cos(d*x+c)^(1/2)/(a^2-b^2)^2/d/e/(b-(-a^2+b^2)^(1/2))/(e*cos(d*x+c))^(1/2)-5/2*a^2*b*(cos(1/2*d
*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(d*x+
c)^(1/2)/(a^2-b^2)^2/d/e/(b+(-a^2+b^2)^(1/2))/(e*cos(d*x+c))^(1/2)-(2*a^2+3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/
cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(e*cos(d*x+c))^(1/2)/(a^2-b^2)^2/d/e^2/cos(d*x+c)^(1/
2)

Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 492, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {2773, 2945, 2946, 2721, 2719, 2780, 2886, 2884, 335, 304, 211, 214} \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx=-\frac {5 a b^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{2 d e^{3/2} \left (b^2-a^2\right )^{9/4}}+\frac {5 a b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{2 d e^{3/2} \left (b^2-a^2\right )^{9/4}}-\frac {\left (2 a^2+3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{d e^2 \left (a^2-b^2\right )^2 \sqrt {\cos (c+d x)}}-\frac {5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{d e \left (a^2-b^2\right )^2 \sqrt {e \cos (c+d x)}}+\frac {b}{d e \left (a^2-b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}-\frac {5 a^2 b \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{2 d e \left (a^2-b^2\right )^2 \left (b-\sqrt {b^2-a^2}\right ) \sqrt {e \cos (c+d x)}}-\frac {5 a^2 b \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{2 d e \left (a^2-b^2\right )^2 \left (\sqrt {b^2-a^2}+b\right ) \sqrt {e \cos (c+d x)}} \]

[In]

Int[1/((e*Cos[c + d*x])^(3/2)*(a + b*Sin[c + d*x])^2),x]

[Out]

(-5*a*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(2*(-a^2 + b^2)^(9/4)*d*e^(
3/2)) + (5*a*b^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(2*(-a^2 + b^2)^(9/
4)*d*e^(3/2)) - ((2*a^2 + 3*b^2)*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/((a^2 - b^2)^2*d*e^2*Sqrt[Cos
[c + d*x]]) - (5*a^2*b*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(2*(a^2 -
b^2)^2*(b - Sqrt[-a^2 + b^2])*d*e*Sqrt[e*Cos[c + d*x]]) - (5*a^2*b*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b + Sq
rt[-a^2 + b^2]), (c + d*x)/2, 2])/(2*(a^2 - b^2)^2*(b + Sqrt[-a^2 + b^2])*d*e*Sqrt[e*Cos[c + d*x]]) + b/((a^2
- b^2)*d*e*Sqrt[e*Cos[c + d*x]]*(a + b*Sin[c + d*x])) - (5*a*b - (2*a^2 + 3*b^2)*Sin[c + d*x])/((a^2 - b^2)^2*
d*e*Sqrt[e*Cos[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2773

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m + 1)/(f*g*(a^2 - b^2)*(m + 1))), x] + Dist[1/((a^2 - b^2)*(m
+ 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + p + 2)*Sin[e + f*x]), x], x] /;
 FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*p]

Rule 2780

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> With[{q = Rt[-a^2
 + b^2, 2]}, Dist[a*(g/(2*b)), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Dist[a*(g/(2*b)),
 Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Dist[b*(g/f), Subst[Int[Sqrt[x]/(g^2*(a^2 - b^2)
+ b^2*x^2), x], x, g*Cos[e + f*x]], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2945

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c - a*d - (a*c -
b*d)*Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1))), x] + Dist[1/(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p
+ 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {b}{\left (a^2-b^2\right ) d e \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}+\frac {\int \frac {-a+\frac {3}{2} b \sin (c+d x)}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))} \, dx}{-a^2+b^2} \\ & = \frac {b}{\left (a^2-b^2\right ) d e \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}-\frac {5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt {e \cos (c+d x)}}+\frac {2 \int \frac {\sqrt {e \cos (c+d x)} \left (-\frac {1}{2} a \left (a^2+4 b^2\right )-\frac {1}{4} b \left (2 a^2+3 b^2\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{\left (a^2-b^2\right )^2 e^2} \\ & = \frac {b}{\left (a^2-b^2\right ) d e \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}-\frac {5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt {e \cos (c+d x)}}-\frac {\left (5 a b^2\right ) \int \frac {\sqrt {e \cos (c+d x)}}{a+b \sin (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2 e^2}-\frac {\left (2 a^2+3 b^2\right ) \int \sqrt {e \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2 e^2} \\ & = \frac {b}{\left (a^2-b^2\right ) d e \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}-\frac {5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt {e \cos (c+d x)}}+\frac {\left (5 a^2 b\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{4 \left (a^2-b^2\right )^2 e}-\frac {\left (5 a^2 b\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{4 \left (a^2-b^2\right )^2 e}-\frac {\left (5 a b^3\right ) \text {Subst}\left (\int \frac {\sqrt {x}}{\left (a^2-b^2\right ) e^2+b^2 x^2} \, dx,x,e \cos (c+d x)\right )}{2 \left (a^2-b^2\right )^2 d e}-\frac {\left (\left (2 a^2+3 b^2\right ) \sqrt {e \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2 e^2 \sqrt {\cos (c+d x)}} \\ & = -\frac {\left (2 a^2+3 b^2\right ) \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right )^2 d e^2 \sqrt {\cos (c+d x)}}+\frac {b}{\left (a^2-b^2\right ) d e \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}-\frac {5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt {e \cos (c+d x)}}-\frac {\left (5 a b^3\right ) \text {Subst}\left (\int \frac {x^2}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{\left (a^2-b^2\right )^2 d e}+\frac {\left (5 a^2 b \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{4 \left (a^2-b^2\right )^2 e \sqrt {e \cos (c+d x)}}-\frac {\left (5 a^2 b \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{4 \left (a^2-b^2\right )^2 e \sqrt {e \cos (c+d x)}} \\ & = -\frac {\left (2 a^2+3 b^2\right ) \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right )^2 d e^2 \sqrt {\cos (c+d x)}}-\frac {5 a^2 b \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{2 \left (a^2-b^2\right )^2 \left (b-\sqrt {-a^2+b^2}\right ) d e \sqrt {e \cos (c+d x)}}-\frac {5 a^2 b \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{2 \left (a^2-b^2\right )^2 \left (b+\sqrt {-a^2+b^2}\right ) d e \sqrt {e \cos (c+d x)}}+\frac {b}{\left (a^2-b^2\right ) d e \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}-\frac {5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt {e \cos (c+d x)}}+\frac {\left (5 a b^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e-b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{2 \left (a^2-b^2\right )^2 d e}-\frac {\left (5 a b^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e+b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{2 \left (a^2-b^2\right )^2 d e} \\ & = -\frac {5 a b^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{2 \left (-a^2+b^2\right )^{9/4} d e^{3/2}}+\frac {5 a b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{2 \left (-a^2+b^2\right )^{9/4} d e^{3/2}}-\frac {\left (2 a^2+3 b^2\right ) \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right )^2 d e^2 \sqrt {\cos (c+d x)}}-\frac {5 a^2 b \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{2 \left (a^2-b^2\right )^2 \left (b-\sqrt {-a^2+b^2}\right ) d e \sqrt {e \cos (c+d x)}}-\frac {5 a^2 b \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{2 \left (a^2-b^2\right )^2 \left (b+\sqrt {-a^2+b^2}\right ) d e \sqrt {e \cos (c+d x)}}+\frac {b}{\left (a^2-b^2\right ) d e \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}-\frac {5 a b-\left (2 a^2+3 b^2\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 d e \sqrt {e \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 4.41 (sec) , antiderivative size = 777, normalized size of antiderivative = 1.58 \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx=\frac {\cos ^{\frac {3}{2}}(c+d x) \left (\frac {12 \left (-6 a^2 b+b^3-\left (2 a^2 b+3 b^3\right ) \cos (2 (c+d x))+4 a \left (a^2-b^2\right ) \sin (c+d x)\right )}{\left (a^2-b^2\right )^2 \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x) \left (-\frac {\left (2 a^2+3 b^2\right ) \csc (c+d x) \left (8 b^{5/2} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{2},1,\frac {7}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(c+d x)+3 \sqrt {2} a \left (a^2-b^2\right )^{3/4} \left (2 \arctan \left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{a^2-b^2}}\right )-2 \arctan \left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{a^2-b^2}}\right )-\log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (c+d x)}+b \cos (c+d x)\right )+\log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (c+d x)}+b \cos (c+d x)\right )\right )\right )}{\sqrt {b} \left (-a^2+b^2\right )}-\frac {48 a \left (a^2+4 b^2\right ) \left (\frac {a \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(c+d x)}{3 \left (a^2-b^2\right )}+\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \left (2 \arctan \left (1-\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \arctan \left (1+\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-\log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )+\log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2}}\right )}{\sqrt {\sin ^2(c+d x)}}\right ) \left (a+b \sqrt {\sin ^2(c+d x)}\right )}{(a-b)^2 (a+b)^2}\right )}{24 d (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))} \]

[In]

Integrate[1/((e*Cos[c + d*x])^(3/2)*(a + b*Sin[c + d*x])^2),x]

[Out]

(Cos[c + d*x]^(3/2)*((12*(-6*a^2*b + b^3 - (2*a^2*b + 3*b^3)*Cos[2*(c + d*x)] + 4*a*(a^2 - b^2)*Sin[c + d*x]))
/((a^2 - b^2)^2*Sqrt[Cos[c + d*x]]) - (Sin[c + d*x]*(-(((2*a^2 + 3*b^2)*Csc[c + d*x]*(8*b^(5/2)*AppellF1[3/4,
-1/2, 1, 7/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Cos[c + d*x]^(3/2) + 3*Sqrt[2]*a*(a^2 - b^2)^
(3/4)*(2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c + d*x]])/(a^2 - b^2)^(1/4)] - 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sq
rt[Cos[c + d*x]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*
x]] + b*Cos[c + d*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*Cos[c +
 d*x]])))/(Sqrt[b]*(-a^2 + b^2))) - (48*a*(a^2 + 4*b^2)*((a*AppellF1[3/4, 1/2, 1, 7/4, Cos[c + d*x]^2, (b^2*Co
s[c + d*x]^2)/(-a^2 + b^2)]*Cos[c + d*x]^(3/2))/(3*(a^2 - b^2)) + ((1/8 + I/8)*(2*ArcTan[1 - ((1 + I)*Sqrt[b]*
Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)
] - Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]] + Log[Sqr
t[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]]))/(Sqrt[b]*(-a^2 + b
^2)^(1/4))))/Sqrt[Sin[c + d*x]^2])*(a + b*Sqrt[Sin[c + d*x]^2]))/((a - b)^2*(a + b)^2)))/(24*d*(e*Cos[c + d*x]
)^(3/2)*(a + b*Sin[c + d*x]))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 8.68 (sec) , antiderivative size = 2128, normalized size of antiderivative = 4.33

method result size
default \(\text {Expression too large to display}\) \(2128\)

[In]

int(1/(e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

(8/e*a*b*(-1/8/(a^2-b^2)^2/e*2^(1/2)/(cos(1/2*d*x+1/2*c)-1/2*2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)+1/8/
(a^2-b^2)^2/e*2^(1/2)/(cos(1/2*d*x+1/2*c)+1/2*2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)-1/64/(a-b)^2/(a+b)^
2/(e^2*(a^2-b^2)/b^2)^(1/4)*(16*(e^2*(a^2-b^2)/b^2)^(1/4)*(cos(1/2*d*x+1/2*c)^2-1/2)*(2*e*cos(1/2*d*x+1/2*c)^2
-e)^(1/2)*b^2+(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)*e*2^(1/2)*(ln((2*e*cos(1/2*d*x+1/2*c
)^2-e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos
(1/2*d*x+1/2*c)^2-e+(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(
1/2)))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/
4))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))
))/e/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-1/16/(a-b)^2/(a+b)^2/(e^2*(a^2-b^2)/b^2)^(1/4
)*2^(1/2)*(ln((2*e*cos(1/2*d*x+1/2*c)^2-e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)
+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-e+(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)
^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)
/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a^2-b^2)/b^
2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))))+2*(e*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/e*((-a^2-b^
2)/(a^2-b^2)^2/sin(1/2*d*x+1/2*c)^2/e/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4*e+sin(1/2*d*x+1/2*c)
^2*e)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)
^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*b^2*a^2/(a-b)/(a+b)*(-(-b^2/(a^2-b^2)/a^2/e*cos(1/2*d*x+1/2*c)
^3+1/2*b^2/(a^2-b^2)/a^2/e*cos(1/2*d*x+1/2*c))*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos
(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-1/4/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1
/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c)
,2^(1/2))+1/4/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+
1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2)))-1/64/a^2/b^2*sum((-3*a^2+2*b^2)/(a-b)/(a+b)/_alpha*(2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arc
tanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*
a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))
^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1
/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2
))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2)))-1/16/(a-b)^2/(a+b)^2*sum((-a^2-b^2)/_alpha*(2^(1/2)/(e*(2*_alph
a^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-3*cos(1/2
*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*
x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/
2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*
c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2)))/sin(1/2*d*x+1/2*c)/(e*(2*cos(1
/2*d*x+1/2*c)^2-1))^(1/2))/d

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(1/(e*cos(d*x+c))**(3/2)/(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx=\int { \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}} {\left (b \sin \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(1/((e*cos(d*x + c))^(3/2)*(b*sin(d*x + c) + a)^2), x)

Giac [F]

\[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx=\int { \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}} {\left (b \sin \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((e*cos(d*x + c))^(3/2)*(b*sin(d*x + c) + a)^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2} \, dx=\int \frac {1}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{3/2}\,{\left (a+b\,\sin \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int(1/((e*cos(c + d*x))^(3/2)*(a + b*sin(c + d*x))^2),x)

[Out]

int(1/((e*cos(c + d*x))^(3/2)*(a + b*sin(c + d*x))^2), x)